Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 377
Filtrar
1.
J Cancer ; 15(10): 2913-2927, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706894

RESUMEN

Purpose: Lung cancer is one of the leading causes with high morbidity and mortality. High mobility group A1 (HMGA1) protein participates in the process of tumorigenesis. This study seeks to explore the specific role of HMGA1 in prognostic value based on The Cancer Genome Atlas (TCGA) database of Lung adenocarcinoma (LUAD) and glycolysis progression in LUAD cells. Patients and Methods: In this research, we compared HMGA1 mRNA expression between tumor tissues and normal samples and evaluated the correlations with clinical characteristics in LUAD patients based on the data of TCGA database. The survival outcome with overall survival (OS), disease-specific survival (DSS) and clinicopathologic characteristics associated were performed using the Kaplan-Meier method and Cox regression. In addition, gene-set enrichment analysis (GSEA) was carried out to explore the biological pathways that related to HMGA1. Cell experiments including cell proliferation assay and glycolysis proteins were performed with A549 and H1299 cells. Results: Our results revealed that HMGA1 mRNA expression was higher in LUAD tissues than in normal tissues. Increased HMGA1 expression in LUAD was associated with Gender (p<0.01), Pathologic stage I&II vs stage III&IV (p<0.001), T1&T2 vs T3&T4 stage (p<0.05), N0 vs N2 stage (p<0.01). Furthermore, multivariate analysis revealed that HMGA1 was an independent risk factor of OS and DSS for LUAD patients (p<0.05). HMGA1 were positively correlated with glycolysis gluconeogenesis pathway and glycolysis markers (HK2, GLUT1, PKM2, LDHA) based on GSEA and Gene Expression Profiling Interactive Analysis (GEPIA) database. At the cellular level, the results of qRT-PCR and western blot assays showed that si-HMGA1 markedly decreased the expression of glycolysis markers. HMGA1 promoted cell glycolysis progression via PI3K/AKT pathway transfected with HMGA1-plasmid and the treatment with 20 µM LY294002. Relevant animal experiments were also synchronously validated and si-HMGA1 groups down-regulated xenograft growth including the weights and size in tumor xenografts. Conclusions: In conclusion, our results suggested that HMGA1 was significantly correlated with poor survival for LUAD tissues and involved in the process of glycolysis in LUAD cells.

2.
Pancreas ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38696438

RESUMEN

ABSTRACT: The incidence rate of hypertriglyceridemia pancreatitis (HTGP) has experienced a notable increase in recent years, with eclipsing alcohol as the second leading cause of acute pancreatitis (AP). HTGP is often associated with more severe local and systemic complications. Recognized as a metabolic disorder hypertriglyceridemia (HTG), holds significant relevance in the pathogenesis of HTGP, yet its mechanisms are not fully understood. Both primary (genetic) and secondary (acquired) factors contribute to elevated triglyceride (TG) levels, which concurrently influence the progression of HTGP. This article presents a comprehensive review of the evolving research on HTGP pathogenesis, encompassing lipid synthesis and metabolism, calcium signal transduction, inflammatory mediators, endoplasmic reticulum stress, autophagy, mitochondrial injury by fatty acids, oxidative stress response, genetic factors, and gene mutations. By unraveling the intricate mechanisms underlying HTGP, this article aims to enhance physicians' understanding of the disease and facilitate the development of potential targeted pharmacological interventions for patients.

3.
Digit Health ; 10: 20552076241247374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665889

RESUMEN

Background: Consumer wearable devices such as wristbands and smartwatches have potential application value in communicable disease surveillance. Objective: We investigated the ability of wearable devices to monitor COVID-19 patients of varying severity. Methods: COVID-19 patients with mobile phones supporting wearable device applications were selected from Dalian Sixth People Hospital. Physiological parameters from the wearable devices and electronic questionnaires were collected from the device wearing until 14 days post-discharge. Clinical information during hospitalization was also recorded. Based on imaging data, the patients were categorized into the milder group without pneumonia and the more severe group with pneumonia. We plotted the curves of the physiological parameters of the two groups to compare the differences and changes. Results: Ninety-eight patients were included in the analysis. The mean age was 39.6 ± 10.5 years, including 45 males (45.9%). There were 24 asymptomatic patients, 10 mild patients, 60 moderate patients, and 4 severe patients. Compared with the milder group, the more severe group had higher heart rate-related parameters, while the heart rate variability (HRV) was the opposite. In the more severe group, the heart rate-related parameters showed a downward trend from 0 to 7 days after the fever resolution. Among them, the resting heart rate and sleep heart rate decreased on the 25th day after the onset and were close to the milder group 1 week after discharge. Conclusions: Consumer wearable devices have the potential to monitor respiratory infections. Heart rate-related parameters obtained from these devices can be sensitive indicators of COVID-19 severity and correlate with disease evolution. Trial registration: ClinicalTrials.gov NCT04459637.

4.
Sci Total Environ ; 929: 172656, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38653420

RESUMEN

There has been increasing concern regarding the adverse environmental and health effects of organic pollutants. A list of priority control organic pollutants (PCOPs) can provide regulatory frameworks for the use and monitoring of organic compounds in the environment. In this study, 20,010 groundwater samples were collected from 15 "first level" groundwater resource zones in China. Fifty (50) organic compounds were analyzed based on their prevalence, occurrence, and physicochemical properties (persistence, bioaccumulation, and toxicity). Results showed that 16 PCOPs, including 12 pesticides, 3 aromatic hydrocarbons (AHs), and 1 phthalate ester, were recognized. Pesticides and AHs accounted for 75 % and 18.75 % of the high-priority pollutants, respectively. There were significant differences in PCOPs between confined and phreatic groundwater. Higher concentrations of pesticides were mainly detected in phreatic groundwater. PCOPs detected in samples from the 15 groundwater resource zones were mainly pesticides and AHs. The groundwater data indicate that the organic compounds detected in the Yellow River Basin (YRB), Yangtze River Basin (YZB), Liaohe River Basin (LRB), and Songhua River Basin (SRB) are mainly categorized as Q1 (high priority) and Q2 (medium priority) pollutants based on the contaminants ranking system in China. The findings from this study offer a snapshot of the wide distribution of PCOPs in the surveyed regions, and are expected to establishing treatment and prevention measures at both the regional and national levels in China.


Asunto(s)
Monitoreo del Ambiente , Agua Subterránea , Contaminantes Químicos del Agua , China , Contaminantes Químicos del Agua/análisis , Agua Subterránea/química , Bioacumulación , Plaguicidas/análisis , Compuestos Orgánicos/análisis
5.
Appl Opt ; 63(8): 1947-1951, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38568633

RESUMEN

Three samples whose growth temperatures were 450°C, 500°C, and 560°C for S E S A M 1, S E S A M 2, and S E S A M 3, respectively, were tested by femto-second time-resolved transient absorption spectroscopy. The results indicate that the carrier dynamics of excited state absorption were dominant, and the lifetimes of carriers trapped by defect levels were about tens of pico-seconds. To further study the influence of carrier dynamics and recovery time of samples by ion-implantation, B + ions of 80 and 130 KeV were implanted into the samples with dose of 1014/c m 2. The modified samples showed a dominance of ultra-fast carrier dynamics of ground-state bleaching and direct recombination, which lasted for hundreds of femto-seconds, over excited state absorption. Additionally, carrier fast trapping was observed to be competitive with the excited state absorption process. After ion-implantation, the carrier dynamics of carrier trapping were enhanced, which contributed to forming an ultra-short laser, while the carrier dynamics of absorption of the excited state were suppressed. The conclusion that defect levels were partially eliminated by B + ion-implantation can be drawn.

6.
Eur J Med Res ; 29(1): 230, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609977

RESUMEN

BACKGROUND: Photodynamic therapy (PDT) is a promising interventional treatment approach that contributes to antitumor immunity. It has been reported that PDT can enhance the effectiveness of immune checkpoint inhibitors (ICIs), but its mechanism is yet unclear. Herein, we implemented bioinformatics analysis to detect common pathways and potential biomarkers in non-small cell lung cancer (NSCLC), PDT, and NSCLC immunotherapy to investigate potential links between PDT, immunotherapy and NSCLC, and their clinical impact. METHODS: Differentially expressed genes in NSCLC- and NSCLC immunotherapy-related data in the GEO database were intersected with PDT-related genes in the GeneCards database to obtain candidate genes and shared pathways. Enrichment analysis and protein-protein interaction were established to identify key genes in functionally enriched pathways. The expression profiles and the prognostic significance of key genes were depicted. RESULTS: Bioinformatics analysis showed that HIF-1α was screened as a prognostic gene in hypoxia, HIF-1, and PD-L1-related signaling pathways, which was associated with clinical response in NSCLC patients after PDT and immunotherapy. In vivo experiments showed that PDT could inhibit tumor growth and upregulate HIF-1α and PD-L1 expressions in NSCLC tissues with a positive correlation, which might influence the blocking activity of ICIs on the HIF-1, and PD-L1-related signaling pathways. CONCLUSIONS: PDT might improve the clinical response of ICIs by upregulating tumor HIF-1α and PD-L1 expressions in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Fotoquimioterapia , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Relevancia Clínica , Antígeno B7-H1/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética
7.
IEEE Trans Cybern ; PP2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598405

RESUMEN

Uncertainty estimation in real-world scenarios is challenged by complexities arising from peaking phenomena and measurement noises. This article introduces a novel scheme for practical uncertainty estimation to mitigate peaking dynamics and enhance overall dynamic behavior. A fusion estimation framework for lumped uncertainties using multiple extended state observers (ESOs) is constructed, and the low-frequency adaptive parameter learning technique is employed to approximate the optimal fusion. The adaptive fusion estimation not only attenuates transient peaks in uncertainty estimation but also attains fast convergence and high accuracy under the high-gain scheduling of ESOs. Furthermore, the robustness of uncertainty estimation against measurement noises is enhanced by cascading filters in the proposed adaptive fusion framework for multiple ESOs. Extensive theoretical analyses are executed to verify practical applicability in peak and noise rejection. Finally, simulations and experiments on the wheel velocity system of a mobile robot are conducted to test the validity and feasibility.

8.
Phytomedicine ; 129: 155582, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38608595

RESUMEN

BACKGROUND: Recent studies have shown that harringtonine (HT) could specifically bind with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein and host cell transmembrane serine protease 2 (TMPRSS2) to block membrane fusion, which is an effective antagonist for SARS-CoV-2. PURPOSE: Our study focused on in-depth exploration of in vitro pharmacokinetic characteristics of HT in lung. METHODS: HPLC-fluorescence detection method was used to detect changes of HT content. Incubation systems of lung microsomes for phase I metabolism and UGT incubation systems for phase II metabolism were performed to elucidate metabolites and metabolic mechanisms of HT, and then the metabolic enzyme phenotypes for HT were clarified by chemical inhibition method and recombinant enzyme method. Through metabolomics, we comprehensively evaluated the physiological dynamic changes in SD rat and human lung microsomes, and revealed the relationship between metabolomics and pharmacological activity of HT. RESULTS: HPLC-fluorescence detection method showed strong specificity, high accuracy, and good stability for rapid quantification of HT. We confirmed that HT mainly underwent phase I metabolism, and the metabolites of HT in different species were all identified as 4'-demethyl HT, with metabolic pathway being hydrolysis reaction. CYP1A2 and CYP2E1 participated in HT metabolism, but as HT metabolism was not NADPH dependent, the esterase HCES1 in lung also played a role. The main KEGG pathways in SD rat and human lung microsomes were cortisol synthesis and secretion, steroid hormone biosynthesis and linoleic acid metabolism, respectively. The downregulated key biomarkers of 11-deoxycortisol, 21-deoxycortisol and 9(10)-EpOME suggested that HT could prevent immunosuppression and interfere with infection and replication of SARS-CoV-2. CONCLUSION: HT was mainly metabolized into 4'-demethyl HT through phase I reactions, which was mediated by CYP1A2, CYP2E1, and HCES1. The downregulation of 11-deoxycortisol, 21-deoxycortisol and 9(10)-EpOME were key ways of HT against SARS-CoV-2. Our study was of great significance for development and clinical application of HT in the treatment of COVID-19.

9.
Arch Virol ; 169(5): 94, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594417

RESUMEN

Considering that avian leukosis virus (ALV) infection has inflicted massive economic losses on the poultry breeding industry in most countries, its early diagnosis remains an important measure for timely treatment and control of the disease, for which a rapid and sensitive point-of-care test is required. We established a user-friendly, economical, and rapid visualization method for ALV amplification products based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) combined with an immunochromatographic strip in a lateral flow device (LFD). Using the ALVp27 gene as the target, five RT-LAMP primers and one fluorescein-isothiocyanate-labeled probe were designed. After 60 min of RT-LAMP amplification at 64 °C, the products could be visualized directly using the LFD. The detection limit of this assay for ALV detection was 102 RNA copies/µL, and the sensitivity was 100 times that of reverse transcription polymerase chain reaction (RT-PCR), showing high specificity and sensitivity. To verify the clinical practicality of this assay for detecting ALV, the gold standard RT-PCR method was used for comparison, and consistent results were obtained with both assays. Thus, the assay described here can be used for rapid detection of ALV in resource-limited environments.


Asunto(s)
Virus de la Leucosis Aviar , Técnicas de Diagnóstico Molecular , Transcripción Reversa , Animales , Virus de la Leucosis Aviar/genética , Sensibilidad y Especificidad , Técnicas de Amplificación de Ácido Nucleico/métodos
10.
BMJ Open Respir Res ; 11(1)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38479820

RESUMEN

BACKGROUND: No studies have investigated whether high-sensitivity C reactive protein (hsCRP) can be used to predict the forced expiratory volume in 1 s (FEV1)/estimated value of FEV1 (FEV1%pred). This study aimed to assess the association between hsCRP and FEV1%pred in middle-aged and elderly individuals without underlying lung disease. METHODS: The data for this study were obtained from a prospective cohort study that included 1047 middle-aged and elderly citizens from Beijing aged 40-75 years without any evidence of underlying lung diseases with FEV1 >70% after receiving inhalational bronchodilators. The baseline analysis of the participants was performed from 30 May 2018 to 31 October 2018. Restricted cubic spline regression and multivariate linear regression models were used to assess the non-linear association and linear association between hsCRP and FEV1/FEV in 6 s (FEV6) and FEV1%pred, respectively. RESULTS: The hsCRP values of 851 participants were recorded; the values were normal in 713 (83.8%) participants. The remaining 196 participants (18.7%) had missing data. A non-linear association was observed between normal hsCRP values and FEV1/FEV6. hsCRP was linearly and negatively correlated with FEV1%pred, and each 1 SD increase in hsCRP was significantly associated with a 2.4% lower in FEV1%pred. Significantly higher FEV1/FEV6 differences were observed in the female subgroup than those in the male subgroup (p=0.011 for interaction). CONCLUSIONS: hsCRP had a non-linear association with FEV1/FEV6 and a linear negative association with FEV1%pred in individuals with normal hsCRP values. hsCRP can be used to predict FEV1%pred, which can be used to predict the development of chronic obstructive pulmonary disease. hsCRP has a stronger association with lung function in women than that in men. TRIAL REGISTRATION NUMBER: NCT03532893.


Asunto(s)
Enfermedades Pulmonares , Pulmón , Anciano , Persona de Mediana Edad , Humanos , Masculino , Femenino , Volumen Espiratorio Forzado , Beijing/epidemiología , Estudios Prospectivos , Proteína C-Reactiva
12.
IEEE Trans Cybern ; PP2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546997

RESUMEN

This article develops the adaptive neural cooperative control scheme for a group of mobile robots with a limited sensing range in presence of input quantization by a dynamic surface control technique. First, to make the controller design feasible, the original robotic system is transformed into a new fully actuated system using a transverse function. Then, taking into consideration the effects of a hysteresis quantizer, an adaptive neural cooperative controller is developed based on the universal approximation property of the radial basis function neural networks and the connectivity preservation strategy. Furthermore, the proposed control scheme can guarantee that all closed-loop signals are semi-globally uniformly ultimately bounded. Meanwhile, desired constraints are not breached and tracking errors are within the predefined domains. Finally, several simulation results are carried out to testify the feasibility and efficiency of the theoretical findings revealed in this article.

13.
J Ethnopharmacol ; 328: 118075, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38513779

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Tanacetum parthenium (L.) Schultz-Bip, commonly known as feverfew, has been traditionally used to treat fever, migraines, rheumatoid arthritis, and cancer. Parthenolide (PTL), the main bioactive ingredient isolated from the shoots of feverfew, is a sesquiterpene lactone with anti-inflammatory and antitumor properties. Previous studies showed that PTL exerts anticancer activity in various cancers, including hepatoma, cholangiocarcinoma, acute myeloid leukemia, breast, prostate, and colorectal cancer. However, the metabolic mechanism underlying the anticancer effect of PTL remains poorly understood. AIM OF THE STUDY: To explore the anticancer activity and underlying mechanism of PTL in human cholangiocarcinoma cells. MATERIAL AND METHODS: In this investigation, the effects and mechanisms of PTL on human cholangiocarcinoma cells were investigated via a liquid chromatography/mass spectrometry (LC/MS)-based metabolomics approach. First, cell proliferation and apoptosis were evaluated using cell counting kit-8 (CCK-8), flow cytometry analysis, and western blotting. Then, LC/MS-based metabolic profiling along with orthogonal partial least-squares discriminant analysis (OPLS-DA) has been constructed to distinguish the metabolic changes between the negative control group and the PTL-treated group in TFK1 cells. Next, enzyme-linked immunosorbent assay (ELISA) was applied to investigate the changes of metabolic enzymes associated with significantly alerted metabolites. Finally, the metabolic network related to key metabolic enzymes, metabolites, and metabolic pathways was established using MetaboAnalyst 5.0 and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Database. RESULTS: PTL treatment could induce the proliferation inhibition and apoptosis of TFK1 in a concentration-dependent manner. Forty-three potential biomarkers associated with the antitumor effect of PTL were identified, which primarily related to glutamine and glutamate metabolism, alanine, aspartate and glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, arginine biosynthesis, arginine and proline metabolism, glutathione metabolism, nicotinate and nicotinamide metabolism, pyrimidine metabolism, fatty acid metabolism, phospholipid catabolism, and sphingolipid metabolism. Pathway analysis of upstream and downstream metabolites, we found three key metabolic enzymes, including glutaminase (GLS), γ-glutamyl transpeptidase (GGT), and carnitine palmitoyltransferase 1 (CPT1), which mainly involved in glutamine and glutamate metabolism, glutathione metabolism, and fatty acid metabolism. The changes of metabolic enzymes associated with significantly alerted metabolites were consistent with the levels of metabolites, and the metabolic network related to key metabolic enzymes, metabolites, and metabolic pathways was established. PTL may exert its antitumor effect against cholangiocarcinoma by disturbing metabolic pathways. Furthermore, we selected two positive control agents that are considered as first-line chemotherapy standards in cholangiocarcinoma therapy to verify the reliability and accuracy of our metabolomic study on PTL. CONCLUSION: This research enhanced our comprehension of the metabolic profiling and mechanism of PTL treatment on cholangiocarcinoma cells, which provided some references for further research into the anti-cancer mechanisms of other drugs.


Asunto(s)
Colangiocarcinoma , Sesquiterpenos , Masculino , Humanos , Glutamina , Reproducibilidad de los Resultados , Metabolómica/métodos , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico , Colangiocarcinoma/tratamiento farmacológico , Arginina , Fenilalanina , Glutatión , Ácidos Grasos , Glutamatos , Biomarcadores
14.
Small ; : e2401506, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38431925

RESUMEN

Reaching rapid reaction kinetics of oxygen reduction (ORR) and oxygen evolution reactions (OER) is critical for realizing efficient rechargeable zinc-air batteries (ZABs). Herein, a novel CoNi-CoN3 composite site containing CoNi alloyed nanoparticles and CoN3 moieties is first constructed in N-doped carbon nanosheet matrix (CoNi-CoN3 /C). Benefiting from the high electroactivity of CoNi-CoN3 composite sites and large surface area, CoNi-CoN3 /C shows a superior half-wave potential (0.88 V versus RHE) for ORR and a small overpotential (360 mV) for OER at 10 mA cm-2 . Theoretical calculations have demonstrated that the introduction of CoNi alloys has modulated the electronic distributions near the CoN3 moiety, inducing the d-band center of CoNi-CoN3 composite site to shift down, thus stabilizing the valence state of Co active sites and balancing the adsorption of OER/ORR intermediates. Accordingly, the reaction energy trends exhibit optimized overpotentials for OER/ORR, leading to superior battery performances. For aqueous and flexible quasi-solid-state rechargeable ZABs with CoNi-CoN3 /C as catalyst, a large power density (250 mW cm-2 ) and high specific capacity (804 mAh g-1 ) are achieved. The in-depth understanding of the electroactivity enhancement mechanism of interactive metal nanoparticles and metal coordinated with nitrogen (MNx ) moieties is crucial for designing novel high-performance metal/nitrogen-doped carbon (M─N─C) catalysts.

15.
J Hazard Mater ; 469: 134087, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38518697

RESUMEN

Pollutant degradation via electron transfer based on advanced oxidation processes (AOPs) provides an economical and energy-efficient method for pollution control. In this study, an iron-rich waste, heating pad waste (HPW), was recycled as a raw material, and a strong magnetic catalyst (Fe-HPW) was synthesized at high temperature (900 °C). Results showed that in the constructed Fe-HPW/PMS system, effective roxarsone (ROX) degradation and TOC removal (72.54%) were achieved at a low-dose of oxidant (PMS, 0.05 mM) and catalyst (Fe-HPW, 0.05 g L-1), the ratio of PMS to ROX was only 2.5:1. In addition, the released inorganic arsenic was effectively removed from the solution. The analysis of the experimental results showed that ROX was effectively degraded by forming PMS/catalyst surface complexes (Fe-HPW-PMS*) to mediate electron transfer in the Fe-HPW/PMS system. Besides, this system performed effective ROX degradation over a wide pH range (pH=3-9) and showed high resistance to different water parameters. Overall, this study not only provides a new direction for the recycling application of HPW but also re-emphasizes the neglected nonradical pathway in advanced oxidation processes.

16.
Cell Rep ; 43(4): 114003, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38527062

RESUMEN

The major histocompatibility complex class I (MHC class I)-mediated tumor antigen processing and presentation (APP) pathway is essential for the recruitment and activation of cytotoxic CD8+ T lymphocytes (CD8+ CTLs). However, this pathway is frequently dysregulated in many cancers, thus leading to a failure of immunotherapy. Here, we report that activation of the tumor-intrinsic Hippo pathway positively correlates with the expression of MHC class I APP genes and the abundance of CD8+ CTLs in mouse tumors and patients. Blocking the Hippo pathway effector Yes-associated protein/transcriptional enhanced associate domain (YAP/TEAD) potently improves antitumor immunity. Mechanistically, the YAP/TEAD complex cooperates with the nucleosome remodeling and deacetylase complex to repress NLRC5 transcription. The upregulation of NLRC5 by YAP/TEAD depletion or pharmacological inhibition increases the expression of MHC class I APP genes and enhances CD8+ CTL-mediated killing of cancer cells. Collectively, our results suggest a crucial tumor-promoting function of YAP depending on NLRC5 to impair the MHC class I APP pathway and provide a rationale for inhibiting YAP activity in immunotherapy for cancer.


Asunto(s)
Presentación de Antígeno , Vía de Señalización Hippo , Antígenos de Histocompatibilidad Clase I , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Animales , Presentación de Antígeno/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Línea Celular Tumoral , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/metabolismo , Ratones Endogámicos C57BL , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Linfocitos T Citotóxicos/inmunología , Factores de Transcripción/metabolismo
17.
Appl Opt ; 63(6): A24-A31, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38437354

RESUMEN

Rapid testing of cement raw meal plays a crucial role in the cement production process, so there is an urgent need for a fast and accurate testing method. In this paper, a method based on the Savitzky-Golay (SG) smoothing and sample set partitioning based on joint x-y distance (SPXY) spectral data pre-processing is proposed to improve the accuracy of the laser-induced breakdown spectroscopy (LIBS) technique for quantitative analysis of cement raw meal components. Firstly, the spectral data is denoised by SG smoothing, which effectively reduces the noise and baseline variations in the spectra. Then, the denoised data is divided into sample sets by combining the SPXY sample division method, which improves the efficiency of data analysis. Finally, the delineated data set is modeled for quantitative analysis by a back-propagation (BP) neural network. Compared to the modeling effect of the four oxide contents of CaO, S i O 2, A l 2 O 3, and F e 2 O 3 in the Hold-Out method, the correlation coefficient (R) was improved by 26%, 10%, 17%, and 4%, respectively. The root mean square error (RMSE) was reduced by 47%, 33%, 43%, and 21%, respectively. The mean absolute percentage error (MAPE) was reduced by 63%, 60%, 36%, and 51%, respectively. The results show that there is a significant improvement in the model effect, which can effectively improve the accuracy of quantitative analysis of cement raw meal composition by LIBS. This is of great significance for the real-time detection of cement raw meal composition analysis.

18.
RSC Adv ; 14(12): 8445-8453, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38476179

RESUMEN

Fenton catalytic medicine that catalyzes the production of ·OH without external energy input or oxygen as a substrate has reshaped the landscape of conventional cancer therapy in recent decades, yet potential biosafety concerns caused by non-safety-approved components restrict their clinical translation from the bench to the bedside. Herein, to overcome this dilemma, we elaborately utilizate safety-approved hetastarch, which has been extensively employed in the clinic as a plasma substitute, as a stabilizer participating in the copper chloride-initiated polymerization of pyrrole monomer before loading it with DOX. The constructed DOX-loaded hetastarch-doped Cu-based polypyrrole (HES@CuP-D) catalyzes the excess H2O2 in tumor cells to ·OH through a Cu+-mediated Fenton-like reaction, which not only causes oxidative damage to tumor cells but also leads to the structural collapse and DOX release. Additionally, HES@CuP-D together with laser irradiation reinforces tumor killing efficiency by hyperthermia-enhanced catalytic activity and -accelerated drug release. As a result, the developed HES@CuP-D provides a promising strategy for Fenton catalytic therapy with negligible toxicity to the body.

19.
J Neurointerv Surg ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38471761

RESUMEN

BACKGROUND: The optimal target post-procedure stenosis after percutaneous angioplasty and stent placement (PTAS) for intracranial stenosis is unknown. We determined the effect of post-procedure stenosis after intracranial PTAS on subsequent clinical events in patients with severe symptomatic intracranial stenosis. METHODS: We categorized the severity of post-procedure stenosis as '<30%', '30-49%', and '≥50%' among 207 patients who underwent PTAS in a multicenter randomized clinical trial. Outcomes included stroke or death within 72 hours and within 30 days, ipsilateral stroke beyond 30 days of treatment, and stroke or death within 30 days or stroke in the qualifying artery beyond 30 days (primary endpoint of the trial). Cox proportional hazards analysis was performed with adjustments for age, initial severity of stenosis, location of stenosis, and qualifying event. Kaplan-Meier curves were generated for the primary endpoint stratified by post-procedure stenosis with log-rank analysis. RESULTS: The severity of post-procedure stenosis was categorized as <30%, 30-49%, and ≥50% in 112, 73, and 22 patients, respectively. Compared with patients with post-procedure stenosis <30%, there was no difference in the risk of primary endpoint among patients with post-procedure stenoses of 30-49% (hazards ratio (HR) 0.85, 95% confidence interval (95% CI) 0.64 to 1.15) or those with ≥50% (HR 0.91, 95% CI 0.57 to 1.43). Log-rank analysis did not demonstrate a difference in rates of primary endpoint between groups stratified by post-procedure stenosis (P=0.70). CONCLUSION: In the absence of any benefit on short- and long-term outcomes, strategies to achieve a low severity of post-procedure stenosis among patients with severe intracranial stenosis may not be warranted.

20.
Fish Physiol Biochem ; 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427282

RESUMEN

Vitamin D3 (VD3) is an essential nutrient for fish and participates in a variety of physiological activities. Notably, both insufficient and excessive supplementation of VD3 severely impede fish growth, and the requirements of VD3 for fish vary considerably in different species and growth periods. The present study aimed to evaluate the appropriate requirements of VD3 for juvenile grass carp (Ctenopharyngodon idella) according to growth performance and disease prevention capacity. In this study, diets containing six supplemental levels of VD3 (0, 300, 600, 1200, 2400, and 4800 IU/kg diet) were formulated to investigate the effect(s) of VD3 on the growth performance, antioxidant enzyme activities, and antimicrobial ability in juvenile grass carp. Compared with the VD3 deficiency group (0 IU/kg), the supplementation of 300-2400 IU/kg VD3 significantly enhanced growth performance and increased antioxidant enzyme activities in the fish liver. Moreover, dietary supplementation of VD3 significantly improved the intestinal health by manipulating the composition of intestinal microbiota in juvenile grass carp. In agreement with this notion, the mortality of juvenile grass carp fed with dietary VD3 was much lower than that in VD3 deficient group upon infection with Aeromonas hydrophila. Meanwhile, dietary supplementation of 300-2400 IU/kg VD3 reduced bacterial load in the spleen and head kidney of the infected fish, and 1200 IU/kg VD3 supplementation could decrease enteritis morbidity and increase lysozyme activities in the intestine. These findings strengthened the essential role of dietary VD3 in managing fish growth and antimicrobial capacity. Additionally, based on weight gain ratio and lysozyme activities, the appropriate VD3 requirements for juvenile grass carp were estimated to be 1994.80 and 2321.80 IU/kg diet, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...